3.9.71 \(\int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx\) [871]

Optimal. Leaf size=194 \[ -\frac {i \text {ArcTan}\left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a-b)^{3/2} d}-\frac {i \tanh ^{-1}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a+b)^{3/2} d}+\frac {2 a}{\left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}} \]

[Out]

-I*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/(I*a-b)^(3/
2)/d-I*arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/(I*a+b
)^(3/2)/d+2*a/(a^2+b^2)/d/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.35, antiderivative size = 194, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {4326, 3648, 3697, 3696, 95, 209, 212} \begin {gather*} \frac {2 a}{d \left (a^2+b^2\right ) \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {i \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \text {ArcTan}\left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d (-b+i a)^{3/2}}-\frac {i \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d (b+i a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^(3/2)),x]

[Out]

((-I)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]
])/((I*a - b)^(3/2)*d) - (I*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Cot[c +
d*x]]*Sqrt[Tan[c + d*x]])/((I*a + b)^(3/2)*d) + (2*a)/((a^2 + b^2)*d*Sqrt[Cot[c + d*x]]*Sqrt[a + b*Tan[c + d*x
]])

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3648

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 + b^2))), x] + Dist[
1/((m + 1)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)*Simp[a*c^2*(m + 1) + a*
d^2*(n - 1) + b*c*d*(m - n + 2) - (b*c^2 - 2*a*c*d - b*d^2)*(m + 1)*Tan[e + f*x] - d*(b*c - a*d)*(m + n)*Tan[e
 + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d
^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && IntegerQ[2*m]

Rule 3696

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 +
 B^2, 0]

Rule 3697

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2
 + B^2, 0]

Rule 4326

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rubi steps

\begin {align*} \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx &=\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\tan ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx\\ &=\frac {2 a}{\left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {\left (2 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\frac {a}{2}-\frac {1}{2} b \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{a^2+b^2}\\ &=\frac {2 a}{\left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {\left ((a-i b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{2 \left (a^2+b^2\right )}-\frac {\left ((a+i b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {1+i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{2 \left (a^2+b^2\right )}\\ &=\frac {2 a}{\left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {\left ((a-i b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{(1+i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 \left (a^2+b^2\right ) d}-\frac {\left ((a+i b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{(1-i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 \left (a^2+b^2\right ) d}\\ &=\frac {2 a}{\left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {\left ((a-i b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{1-(-i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\left (a^2+b^2\right ) d}-\frac {\left ((a+i b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{1-(i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\left (a^2+b^2\right ) d}\\ &=-\frac {i \tan ^{-1}\left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a-b)^{3/2} d}-\frac {i \tanh ^{-1}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a+b)^{3/2} d}+\frac {2 a}{\left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.84, size = 202, normalized size = 1.04 \begin {gather*} \frac {\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left (-\frac {(-1)^{3/4} \text {ArcTan}\left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(-a+i b)^{3/2}}+\frac {\frac {\sqrt [4]{-1} (i a+b) \text {ArcTan}\left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(a+i b)^{3/2}}+\frac {2 a \sqrt {\tan (c+d x)}}{(a+i b) \sqrt {a+b \tan (c+d x)}}}{a-i b}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^(3/2)),x]

[Out]

(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(-(((-1)^(3/4)*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sq
rt[a + b*Tan[c + d*x]]])/(-a + I*b)^(3/2)) + (((-1)^(1/4)*(I*a + b)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[
c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(a + I*b)^(3/2) + (2*a*Sqrt[Tan[c + d*x]])/((a + I*b)*Sqrt[a + b*Tan[c +
 d*x]]))/(a - I*b)))/d

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 34.00, size = 4822, normalized size = 24.86

method result size
default \(\text {Expression too large to display}\) \(4822\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/d*(-3*I*b^2*(((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2
)*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c
))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)
/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),-(-b+(a^2+b^2)^(1/2))/(I*a-(a^2+b^2)^(1/2)+b),1/2*2^(1/2)*((-b+(a^2+b^
2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)*a-3*I*(((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(
-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2
)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(a^2+b^2)^(1/2)*EllipticPi((((a^
2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),(-b+(a^2+b^2)^(1/2
))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)*a*b-I*a^3*(((a
^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)
*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1
/2))/sin(d*x+c))^(1/2)*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2
))/sin(d*x+c))^(1/2),-(-b+(a^2+b^2)^(1/2))/(I*a-(a^2+b^2)^(1/2)+b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)
^(1/2))^(1/2))*sin(d*x+c)+3*I*b^2*(((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2
))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/
2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x
+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),(-b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^
(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)*a+3*I*(((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)
-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)
-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(a^2+b^2)^(1/2
)*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),
-(-b+(a^2+b^2)^(1/2))/(I*a-(a^2+b^2)^(1/2)+b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*
x+c)*a*b+I*a^3*(((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2
)*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c
))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)
/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),(-b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2
)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)+a^2*(((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+
(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/s
in(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(a^2+b^2)^(1/2)*EllipticPi((((a^2+b
^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),-(-b+(a^2+b^2)^(1/2))
/(I*a-(a^2+b^2)^(1/2)+b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)-2*b^2*(((a^2+b^2
)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d
*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/s
in(d*x+c))^(1/2)*(a^2+b^2)^(1/2)*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2
+b^2)^(1/2))/sin(d*x+c))^(1/2),-(-b+(a^2+b^2)^(1/2))/(I*a-(a^2+b^2)^(1/2)+b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))
/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)+a^2*(((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2
)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*sin(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c
))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(a^2+b^2)^(1/2)*EllipticPi((((a^2+b^2)^(1/2
)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),(-b+(a^2+b^2)^(1/2))/(I*a+(a^
2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*sin(d*x+c)-2*b^2*(((a^2+b^2)^(1/2)*s
in(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*s
in(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c)
)^(1/2)*(a^2+b^2)^(1/2)*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/
2))/sin(d*x+c))^(1/2),(-b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)
^(1/2))^(1/2))*sin(d*x+c)-2*a^2*(((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))
/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)...

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b*tan(d*x + c) + a)^(3/2)*cot(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}} \cot ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)**(3/2)/(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral(1/((a + b*tan(c + d*x))**(3/2)*cot(c + d*x)**(3/2)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(si

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cot(c + d*x)^(3/2)*(a + b*tan(c + d*x))^(3/2)),x)

[Out]

int(1/(cot(c + d*x)^(3/2)*(a + b*tan(c + d*x))^(3/2)), x)

________________________________________________________________________________________